Leaders in monolith chromatography

Menu

Chromatographic behavior of IgM:DNA complexes

P. Gagnon, F. Hensel, S. Lee, S. Zaidi

Journal of Chromatography A, 1218 (2011) 2405-2412

This study documents the presence of stable complexes between monoclonal IgM and genomic DNA in freshly harvested mammalian cell culture supernatants. 75% of the complex population elutes from size exclusion chromatography with the same retention volume as IgM. DNA comprises 24% of the complex mass, corresponding to an average of 347 base pairs per IgM molecule, distributed among fragments smaller than about 115 base pairs. Electrostatic interactions appear to provide most of the binding energy, with secondary stabilization by hydrogen bonding and metal affinity. DNA-dominant complexes are unretained by bioaffinity chromatography, while IgM-dominant complexes are retained and coelute with IgM. DNA-dominant complexes are repelled from cation exchangers, while IgM-dominant complexes are retained and partially dissociated. Partially dissociated forms elute in order of decreasing DNA content. The same pattern is observed with hydrophobic interaction chromatography. All complex compositions bind to anion exchangers and elute in order of increasing DNA content. A porous particle anion exchanger was unable to dissociate DNA from IgM. Monolithic anion exchangers, offering up to15-fold higher charge density, achieved nearly complete complex dissociation. The charge-dense monolith surface appears to outcompete IgM for the DNA. Monoliths also exhibit more than double the IgM dynamic binding capacity of the porous particle anion exchanger, apparently due to better surface accessibility and more efficient mass transfer.

Purchase full article


Products used

You can also use