Leaders in monolith chromatography


Single-use in the biopharmaceutical industry: A review of current technology impact, challenges and limitations

A. G. Lopes

FBP-461, Food and Bioproducts Processing (2014)

As the biopharmaceutical industry matures, the trend towards increased flexibility and productivity, faster time tomarket and greater profitability are driving the replacement of traditional stainless steel equipment by single-use technology (SUT). The use of SUT in the biopharmaceutical industry can significantly impact the manufacturing process efficiency by reducing capital costs, improving plant flexibility, reducing start-up times and costs, and elim-inating both non-value added process steps and the risk of cross-contamination. In addition it significantly reduces process liquid waste, labour costs and on-site quality and validation requirements. This paper reviews the current status of the technology and the impact of SUT in the biopharmaceutical industry, with the aim of identifying the challenges and limitations that still need to be addressed for further adoption of these technologies. Even tough SUT has a multitude of systems available, its components and assemblies have little standardisation as well as alack of harmonised tests and procedures among suppliers, with an array of guidelines from a variety of sourcesand no critical limits have been established. In addition, the use of SUT has new validation requirements such as leachables and extractables, suppliers’ qualification and SUT lot-to-lot variability. The lack of expertise in these areas and the new training requirements when using SUT also need to be addressed. To date the majority of the avail-able literature regarding SUT is found in trade journals where typically suppliers are the main contributors. There is still a lack of engagement of the academic community, which contributes to very limited scientific proof from independent peer-reviewed research to support performance of SUT. This is particularly the case during operation and integrity testing of SUT, during for example on-site testing, transport and disposal. Another area where no work has been undertaken concerns conceptual approaches for facility clean-room requirement and appropriate layout design using SUT. Investment in novel technologies, research, standardisation and training is paramount for further development and implementation of SUTs across all sectors of the biopharmaceutical industry.

Purchase full article

Products used

You can also use