Leaders in monolith chromatography

Menu

HPLC analysis of synthetic polymers on short monolithic columns

E. Maksimova, E. Vlakh, E. Sinitsyna, T. Tennikova
J. Sep. Sci. 2013, 36, 3741–3749

Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert-butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene-co divinylbenzene).
disks (12 id × 3 mm and 5 × 5 mm) and lab-made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution.
A comparison of the retention properties of the poly(styrene-co-divinylbenzene) diskshaped monoliths with those based on poly(lauryl methacrylate-co-ethylene dimethacrylate), poly(butyl methacrylate-co-ethylene dimethacrylate), and poly(glycidyl methacrylate-co-ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.

Purchase full article


Products used

You can also use